Las Matemáticas en la antigüedad.
Los primeros libros egipcios, escritos hacia el año 1800 a.C., muestran un sistema de numeración decimal con distintos símbolos para las sucesivas potencias de 10 (1, 10, 100…), similar al sistema utilizado por los romanos. Los números se representaban escribiendo el símbolo del 1 tantas veces como unidades tenía el número dado, el símbolo del 10 tantas veces como decenas había en el número, y así sucesivamente. Para sumar números, se sumaban por separado las unidades, las decenas, las centenas… de cada número. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso
Las primeras referencias a matemáticas avanzadas y organizadas datan del tercer milenio a.C., en Babilonia y Egipto. Estas matemáticas estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos y sin mención de conceptos matemáticos como los axiomas o las demostraciones.
Los griegos tomaron elementos de las matemáticas de los babilonios y de los egipcios. La innovación más importante fue la invención de las matemáticas abstractas basadas en una estructura lógica de definiciones, axiomas y demostraciones. Según los cronistas griegos, este avance comenzó en el siglo VI a.C. con Tales de Mileto y Pitágoras de Samos. Este último enseñó la importancia del estudio de los números para poder entender el mundo. Algunos de sus discípulos hicieron importantes descubrimientos sobre la teoría de números y la geometría, que se atribuyen al propio Pitágoras.
El sistema babilónico de numeración era bastante diferente del egipcio. En el babilónico se utilizaban tablillas con varias muescas o marcas en forma de cuña (cuneiforme); una cuña sencilla representaba al 1 y una marca en forma de flecha representaba al 10 (véase tabla adjunta). Los números menores que 59 estaban formados por estos símbolos utilizando un proceso aditivo, como en las matemáticas egipcias. El número 60, sin embargo, se representaba con el mismo símbolo que el 1, y a partir de ahí, el valor de un símbolo venía dado por su posición en el número completo. Por ejemplo, un número compuesto por el símbolo del 2, seguido por el del 27 y terminado con el del 10, representaba 2 × 602 + 27 × 60 + 10. Este mismo principio fue ampliado a la representación de fracciones, de manera que el ejemplo anterior podía también representar 2 × 60 + 27 + 10 × (), o 2 + 27 × () + 10 × ()-2. Este sistema, denominado sexagesimal (base 60), resultaba tan útil como el sistema decimal (base 10).
Las matemáticas aplicadas en Grecia
En paralelo con los estudios sobre matemáticas puras hasta ahora mencionados, se llevaron a cabo estudios de óptica, mecánica y astronomía. Muchos de los grandes matemáticos, como Euclides y Arquímedes, también escribieron sobre temas astronómicos. A principios del siglo II a.C., los astrónomos griegos adoptaron el sistema babilónico de almacenamiento de fracciones y, casi al mismo tiempo, compilaron tablas de las cuerdas de un círculo. Para un círculo de radio determinado, estas tablas daban la longitud de las cuerdas en función del ángulo central correspondiente, que crecía con un determinado incremento. Eran similares a las modernas tablas del seno y coseno, y marcaron el comienzo de la trigonometría. En la primera versión de estas tablas —las de Hiparco, hacia el 150 a.C.— los arcos crecían con un incremento de 7y°, de 0° a 180°. En tiempos del astrónomo Tolomeo, en el siglo II d.C., la maestría griega en el manejo de los números había avanzado hasta tal punto que Tolomeo fue capaz de incluir en su Almagesto una tabla de las cuerdas de un círculo con incrementos de y° que, aunque expresadas en forma sexagesimal, eran correctas hasta la quinta cifra decimal.
Mientras tanto, se desarrollaron otros métodos para resolver problemas con triángulos planos y se introdujo un teorema —que recibe el nombre del astrónomo Menelao de Alejandría— para calcular las longitudes de arcos de esfera en función de otros arcos. Estos avances dieron a los astrónomos las herramientas necesarias para resolver problemas de astronomía esférica, y para desarrollar el sistema astronómico que sería utilizado hasta la época del astrónomo alemán Johannes Kepler.
Excelente información, muy útil e importante
ResponderBorrarMuchas gracias
ResponderBorrar